Calculus Solutions Ex# 3.3

Formulas: Derivatives of exponential and inverse trigonometric functions functions. $$ \begin{aligned} & \text { (1) }\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)} \text { or for } x=f(y) , \frac{d y}{d x}=\frac {1}{dx/dy} \\ \\ & \text { (2) } \frac{d}{d x}\left[b^{x}\right]=b^{x} \ln b \\ \\ & \text { (3) } \frac{d}{d x}\left[e^{x}\right]=e^{x} \end{aligned} $$ If $u$ is a differentiable function … Read more