Calculus Solutions Ex#2.5

  Fomulas: Derivatives of trigonometric functions $$ \begin{array}{ll} \frac{d}{d x}[\sin x]=\cos x & \frac{d}{d x}[\cos x]=-\sin x \\ \\ \frac{d}{d x}[\tan x]=\sec ^2 x & \frac{d}{d x}[\sec x]=\sec x \tan x \\ \\ \frac{d}{d x}[\cot x]=-\csc x^2 & \frac{d}{d x}[\csc x]=-\csc x \cot x \end{array} $$ Q.01 Find $f^{\prime}(x)$ where $f(x)=4 \cos x+2 \sin x$ … Read more