Calculus Solution Ex # 4.5

 

Exercise 4.5

Question 1
Let x be the required number, then the reciprocal is \frac{1}{x}.

    \[f(x)=x+\frac{1}{x};\quad\left[\frac{1}{2}, 3 / 2\right]--------(1)\]

differentiating (1) w.r.t x

    \[f^{\prime}(x)=1-\frac{1}{x^2}\]

Set

    \[f^{\prime}(x)=0\]

    \[\Rightarrow 1-\frac{1}{x^2}=0 \Rightarrow 1=\frac{1}{x^2}\]

    \[\Rightarrow x^2=1, \quad \Rightarrow x= \pm 1\]

But only x=1 lie in the interval \left(\frac{1}{2}, \frac{3}{2}\right), therefore neglecting x=-1.
Now substituting x=\frac{1}{2}, 1, and \frac{3}{2} in (1)

    \[f(1 / 2)=\frac{1}{2}+\frac{1}{1 / 2}=\frac{1}{2}+2=5 / 2\]

    \[f(1)=1+\frac{1}{1}=2\]

    \[f\left(\frac{3}{2}\right)=\frac{3}{2}+\frac{1}{3 / 2}=\frac{3}{2}+\frac{2}{3}=\frac{9+5}{6}=\frac{13}{6}\]

(a) f is as small as possible at x=1

(b) f is as large as possible at x=\frac{1}{2}.

Question 2
Let x and y be the two required numbers then

    \[x+y=1-------(2)\]

    \[f=x^2+y^2-----(2)\]

From (1)  we have \quad y=1-x
substituting y=1-x into (2) to get f as a function one singe variable x

    \[f=x^2+(1-x)^2\]

    \[f=x^2+1+x^2-2 x\]

    \[f=2 x^2-2 x+1 ; \quad 0 \leq x \leq 1\]

Differentiating w.r.t. x

    \[f^{\prime}(x)=4 x-2----(3)\]

Now we shall put  f^{\prime}(x)=0 to find the values of x which lies in the interval [0,1]. Therefore, from (3) we have

    \[ f^{\prime}(x)=0 \]

    \[\Rightarrow 4x-2=0\]

    \[\Rightarrow 4x=2\]

    \[\Rightarrow x=2/4 \]

    \[\Rightarrow x=1/2\]

Thus x=1/2 lies on the interval (0,1)

We shall find the values of f(x) at the end point of the interval |0,1]  ie x=0, 1 and x= \frac{1}{2}.

    \[f(0)=0-0+1=1\]

    \[f\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)^2-2\left(\frac{1}{2}\right)+1=\frac{1}{2}-1+1=\frac{1}{2}\]

    \[f(1)=2(1)^2-2(1)+1=1\]

a) f is maximum at x=0, and at x=1
so
when x=0, then y=1-0=1
when x=1, then y=1-1=0

Thus we conclude  that f is as large as possible when one of the number is 0 and other is 1.

b) f is minimum when x=1/2
So since x=\frac{1}{2} then y=1-\frac{1}{2}=\frac{1}{2}.

Question 3
Let x be the length and y breadth of the rectangular feiled then

    \[x+2y=1000\]

    \[2y=1000-x\]

    \[y=500-x / 2------(1)\]

Let A be we area of the rectangular field

    \[A=\text{length}\times \text{breadth}\]

    \[A=xy-----(2)\]

By using (1), we have

    \[A=x\left(500-\frac{x}{2}\right)\]

    \[A=500x-\frac{x^2}{2} \quad\quad 0 \leq x \leq 100-----(3)\]

differentiating w.r.t x

    \[\frac{d A}{d x}=500-{x}\]

    \[\begin{aligned} \text {Set} \quad \quad \frac{d A}{d x}=0 \Rightarrow \quad 500 -{x}=0 \end{aligned}\]

    \[\Rightarrow x=500\]

substituting x=0, 500 and 1000 into (3)

    \[A(0)=0\]

    \[A(500)=500(500)-\frac{(500)^2}{2}=250000-\frac{250000}{2}\]

    \[=\frac{250000}{2}=125000\]

    \[A(1000)=500(1000)-\frac{(1000)^2}{2}\]

    \[A(1000)=500000-500000=0\]

Thus A is maximum when x=500
Substituting x=500 in to (1) we get

    \[y=500-\frac{500}{2}=500-250=250\]