Calculus Solutions EX#4.1

EXERCISE 4.1

10. 

(a)  f is increasing on (-\infty,+\infty)

(b)  f is not decreasing anywhere.

(C) f is concave up on (-\infty, 1) \quad and (3,+\infty)

(d)  f is concave down (1,3)

(e) the x-coordinates of all inflection points x=1  and x=3

15-32. Find (a) the intervals on which f is increasing, (b) open intervals on which f is decreasing (c) the open intervals on which f is concave up (d) the open intervals on which f in concave down, and (e) live x-coordinates of all inflection points.

15

    \[ \begin{aligned}& f(x)=x^{2}-3 x+8 \\& f^{\prime}(x)=2 x-3, \quad f^{\prime \prime}(x)=2 \\& \text { Put } \quad f^{\prime}(x)=0 \Rightarrow 2 x-3=0 \quad \Rightarrow 2 x=3 \Rightarrow x=3 / 2\end{aligned}\]

Sign analysis for {f}^{\prime}(x)

    \[ \begin{center} \begin{tabular}{|c|c|c|c|}\hline\text {Interval} & $\begin{array}{c}\text { test point } \\ c\end{array}$ & $\begin{array}{l}f^{\prime }(c) \end{array}$ & Sign of $f^{\prime}(x)$ \\\hline$x<\frac{3}{2}$ & 0 & $\begin{aligned} f^{\prime }(0) & =2(0)-3 \\ & =-3\end{aligned}$ & - \\\hline$x>\frac{3}{2}$ & 2 & $\begin{aligned} f^{\prime}(2) & =2(2)-3 \\ & =+1\end{aligned}$ & + \\\hline \end{tabular}\end{center} \]

(a) f is increasing on \left[\frac{3}{2},+\infty\right) since f^{\prime}(x)  < 0  on \left(\frac{3}{2},+\infty\right)

(b) f is decreasing on \left(-\infty, \frac{3}{2}\right] since f^{\prime}(x)>0 on \left(-\infty, \frac{3}{2}\right)

Note: one can take any value from the interval as a test value.

(c) Since f^{\prime \prime}(x)=2>0 on (-\infty,+\infty)

\therefore f is concave up on (-\infty,+\infty)

(d) f is nowhere concave down

(e) Since concavity does not change at any x, therefore f has no inflection point.

16.

    \[\begin{aligned}& f(x)=5-4 x-x^{2} \\& f^{\prime}(x)=-4-2 x, \quad f^{\prime \prime}(x)=-2\end{aligned}\]

Put

    \[f^{\prime}(x)=0 \Rightarrow-4-2 x=0 \quad-x=4 \Rightarrow x=-2\]

Sign analysis of f^{\prime}(x)

    \[ \begin{center} \begin{tabular}{|c|c|c|c|}\hline\text {Interval} & $\begin{array}{c}\text { test point } \\ c\end{array}$ & $\begin{array}{l}f^{\prime }(c) \end{array}$ & Sign of $f^{\prime}(x)$ \\\hline$x<-2$ & -3 & $\begin{aligned} f^{\prime }(-3) & =-4-2(-3) \\ & =-4+6=2\end{aligned}$ & + \\\hline$x>-2$ & 0 & $\begin{aligned} f^{\prime}(0) & =-4-2(0) \\ & =-4\end{aligned}$ & - \\\hline \end{tabular}\end{center} \]

 

(a) f^{\prime}(x)>0 on (-\infty,-2) \Rightarrow f is increasing on (-\infty,-2]

(b) f^{\prime}(x)<0 on (-2,+\infty) \Rightarrow f is decreasing on [-2,+\infty)

(c) since f^{\prime \prime}(x)=-2<0 on (-\infty,+\infty), therefore f is nowhere concave up.

(d) Since f^{\prime \prime}(x)=-2<0 on (-\infty,+\infty), therefore f is Concave down on (-\infty,+\infty)

(e) f has no inflection point since f does not change the concavity on (-\infty,+\infty)

17/

    \[f(x)=(2 x+1)^{3}\]

differentiating twice w.r. t  x

    \[\begin{aligned}& f^{\prime}(x)=3(2 x+1)^{3-1}(2(1)+0) \\& f^{\prime}(x)=6(2 x+1)^{2} \\& f^{\prime \prime}(x)=6.2\left(2 x+1)^{2-1}(2(1)+0)\right. \\& f^{\prime \prime}(x)=24(x+1) \\& \text { Put } f^{\prime}(x)=0 \Rightarrow 6(2 x+1)^{2}=0 \\& \Rightarrow \quad 2 x+1=0 \\& 2 x=-1 \Rightarrow x=-1 / 2\end{aligned}\]

Sign analysis of f^{\prime}(x)

 

 

    \[ \begin{center} \begin{tabular}{|c|c|c|c|}\hline\text {Interval} & $\begin{array}{c}\text { test point } \\ c\end{array}$ & $\begin{array}{l}f^{\prime }(c) \end{array}$ & Sign of $f^{\prime}(x)$ \\\hline$x<-\frac{1}{2}$ & -1 & $\begin{aligned} f^{\prime }(-1) & =6(2(-1)+1)^{2} \\ & =+6\end{aligned}$ & +\\\hline$x>-\frac{1}{2}$ & 0 & $\begin{aligned} f^{\prime}(0) & =6(2(0)+1)^2 \\ & =+6\end{aligned}$ & + \\\hline \end{tabular}\end{center} \]

 

(a)

    \[\begin{aligned}& \text { Since } f^{\prime}(x)>0 \text { on }(-\infty,+\infty) \\& \Rightarrow f(x) \text { is increasing on }(-\infty, \infty)\end{aligned}\]

(b)

    \[f \text { is not decreasing anywhere. }\]

Now put f^{\prime \prime}(x)=0

    \[\Rightarrow 24(2 x+1)=0 \Rightarrow 2 x+1=0 \Rightarrow x=\frac{-1}{2}.\]

Sign analysis of f^{\prime \prime}(x)

    \[ \begin{center}\begin{tabular}{|c|c|c|c|}\hline\text {Interval} & $\begin{array}{c}\text { test point } \\ c\end{array}$ & $\begin{array}{l}f^{\prime \prime}(c)= \\ 24(2 c+1)\end{array}$ & Sign of $f^{\prime \prime}(x)$ \\\hline$x<-\frac{1}{2}$ & -1 & $\begin{aligned} f^{\prime \prime}(-1) & =24(2(-1)+1) \\ & =-24\end{aligned}$ & - \\\hline$x>-\frac{1}{2}$ & 0 & $\begin{aligned} f^{\prime}(0) & =24(2(0)+1) \\ & =+24\end{aligned}$ & + \\\hline\end{tabular}\end{center} \]

(c) Since f^{\prime \prime}(x)>0 for x> -\frac{1}{2} \Rightarrow f is concave up on (-\frac{1}{2},+\infty)

(d) Since f^{\prime \prime}(x)<0 for x< -\frac{1}{2} \Rightarrow f is concave down on (-\infty, -\frac{1}{2}) 

(e) Since concavity chnages at x=-\frac{1}{2}, therefore x=-\frac{1}{2} is the x coordinate of point of inflection.