EXERCISE 7.3

 

Exercise 7.3

1-52 Evaluate the integral.

(1)

    \[\int \cos ^{3} x \sin x d x ---(1)\]

    \[\begin{aligned} \text { Let } \quad u & =\cos x --(2)\\ \\ d u & =-\sin x d x \\ \\ -d u & =\sin x d x \end{aligned}\]

then (1) becomes

    \[-\int u^{3} d u=-\frac{u^{4}}{4}+c---(3)\]

From (2) substituting u=\cos x into (3).

    \[\begin{aligned} \therefore & \int \cos ^{3} x \sin x d x=-\frac{\cos ^{4} x}{4}+c \end{aligned}\]

(2)

    \[\begin{aligned} \int \sin ^{5} 3 x \cos 3 x d x & -(1) \\ \\ \text { Let } u & =\sin 3 x-(2) \\ \\ d u & =3 \cos 3 x d x \\ \\ \frac{1}{3} d u & =\cos 3 x d x \end{aligned}\]

then (1) becomes

    \[\frac{1}{3} \int u^{5} d u=\frac{1}{3} \frac{u^{6}}{6}+c=\frac{1}{18} u^{6}+c---(3)\]

From (2) substituting u=\cos 3x into (3)

    \[\int \sin ^{5} 3 x \cos 3 x d x=\frac{1}{18} \sin ^{6} 3 x+c\]

 

(3)

    \[\int \sin ^{2} 5 \theta d \theta---(1)\]

We know that

    \[\sin ^{2} 5 \theta=\frac{1-\cos 10 \theta}{2}\]

then (1) becomes

    \[\begin{aligned} & \int \frac{1-\cos 10 \theta}{2} d \theta \\ \\ &=\frac{1}{2} \int d \theta-\frac{1}{2} \int \cos 10 \theta d \theta \\ \\ & =\frac{1}{2} \theta-\frac{1}{2} \frac{\sin 10 \theta}{10}+c \\ \\ & =\frac{1}{2} \theta-\frac{1}{20} \sin 10 \theta+c \end{aligned}\]

(4)

    \[\int \cos ^{2} 3 x d x ---(1)\]

We know that

    \[\cos ^{2} 3 x=\frac{1+\cos 6 x}{2}\]

then (1) becomes

    \[\begin{aligned} & \int \frac{1+\cos 6 x}{2} d x=\frac{1}{2} \int d x+\frac{1}{2} \int \cos 6 x d x \\ \\ & =\frac{1}{2} x+\frac{1}{2} \cdot \frac{\sin 6 x}{6}+c \\ \\ & =\frac{1}{2} x+\frac{1}{12} \sin 6 x+c \end{aligned}\]

5.

    \[\int \sin ^{3} a \theta d \theta\]

We can write it as

    \[\begin{aligned} & \int \sin a \theta \sin ^{2} a \theta d \theta \\ \\ & =\int \sin a \theta\left(1-\cos ^{2} a \theta\right) d \theta-(1) \\ \\ & \operatorname{Let} u=\cos a \theta-(2) \\ \\ & d u=-d \sin a \theta d \theta \Rightarrow-\frac{1}{a} d u=\sin a \theta d \theta \end{aligned}\]

Then (1) becomes

    \[\begin{aligned} & =\int\left(1-u^{2}\right)\left(-\frac{1}{a} d u\right) \\ \\ & =-\frac{1}{a} \int d u+\frac{1}{a} \int u^{2} d u \\ \\ & =-\frac{1}{a} u+\frac{1}{a} \cdot \frac{u^{3}}{3}+c---(3) \end{aligned}\]

From (2) Substituting u=\cos a \theta into (3)

    \[\int \sin ^{3} a \theta d \theta=-\frac{\cos a \theta}{a}+\frac{1}{3 a} \cos ^{3} a \theta+c\]

(6)

    \[\quad \int \cos ^{3} a t dt\]

This can be written as

    \[\begin{aligned} & \int \cos ^{2} a t \cos a t d t \\ & =\int\left(1-\sin ^{2} a t\right) \cos a t d t---(1) \end{aligned}\]

    \[\text { Let } u=\sin a t-(2)\]

    \[\begin{aligned} d u & =a \cos a t d t \\ \frac{1}{a} d u & =a \cos a t d t \end{aligned}\]

then (1) becomes

    \[\begin{aligned} & \int\left(1-u^{2}\right) \frac{1}{d} d u \\ = & \frac{1}{a} \int d u-\frac{1}{a} \int u^{2} d u \\ = & \frac{1}{a} u-\frac{1}{a} \frac{u^{3}}{3}+c---(3) \end{aligned}\]

From (2) Substituting u= \sin at into (3)

    \[\int \cos ^{3} a t d t=\frac{1}{a} \sin a t-\frac{1}{3 a} \sin ^{3} a t+c\]

7.

    \[\begin{aligned} \int \sin a x \cos a x d x --- (1) \\ \\ \text { Let } u & =\sin a x \\ \\ d u & =a \cos a x d x \\ \\ \frac{1}{a} d u & =\cos a x d x \end{aligned}\]

Then (1) becomes

    \[\frac{1}{a} \int u d u=\frac{1}{a} \frac{u^{2}}{2}+c----(3)\]

From (2) Substituting u=\sin a x into (3)

    \[\begin{aligned} & \therefore \quad \sin a x \cos a x d x=\frac{1}{2 a} \sin ^{2} a x+c \end{aligned}\]

(8)

    \[\begin{aligned} & \int \sin ^{3} x \cos ^{3} x d x \\ \\ & =\int \sin ^{3} x \cos ^{2} x \cos x d x \\ \\ & =\int \sin ^{3} x\left(1-\sin ^{2} x\right) \cos x d x \\ \\ & =\int\left(\sin ^{3} x-\sin ^{5} x\right) \cos x d x-(1) \\ \\ & \text { Let } u=\sin x-(2) \\ \\ & d u=\cos x d x \end{aligned}\]

Then (1) becomes

    \[\begin{aligned} & \int\left(u^{3}-u^{5}\right) d u \\ & =\frac{u^{4}}{4}-\frac{u^{6}}{6}+c----(3) \end{aligned}\]

From (2) substituting u=\sin x into (3)

    \[\int \sin ^{3} x \cos ^{3} x d x=\frac{1}{4} \sin ^{4} x-\frac{1}{6} \sin ^{6} x+c\]