Calculus Solutions Ex#1.5

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab
Q.05
Solution:
Consider the function

    \[f(x)=\left\{\begin{array}{ll} 1, & x \neq 4 \\ -1 & x=4 \end{array} \text { and } g(x)= \begin{cases}4 x-10, & x \neq 4 \\ -6 & x=4\end{cases}\right.\]

For each part, is the given function continuous at x=4 ?
(a) f(x)

    \[\begin{aligned} &f(x)=\left\{\begin{array}{ll} 1, & x \neq 4 \\ -1 & x=4 \end{array} \\ & \lim _{x \rightarrow 4} f(x)=1 \text { and } f(4)=-1 \\ & \Rightarrow \lim _{x \rightarrow 4} f(x) \neq f(4) \end{aligned}\]

\Rightarrow f is not continaous at x=4
(b) g(x)

    \[g(x)= \begin{cases}4 x-10, & x \neq 4 \\ -6 & x=4\end{cases}\right.\]

    \[\lim _{x \rightarrow 4} g(x)=\operatorname{lim}_{x \rightarrow 4}(4 x-10)=4(4)-10=6\]

and g(4)=-6
Since \lim _{x \rightarrow 4} g(x) \neq g(4) \therefore  g is not continuous at x=4
Q.05(c-d)
(c) -g(x)
 
Solution:

    \[g(x)= \begin{cases}4 x-10, & x \neq 4 \\ -6 & x=4\end{cases}\right.\]

    \[\begin{aligned} \lim_{x \rightarrow 4}[-g(x)] & =-\left[\lim _{x \rightarrow 4} g(x)\right] \\ &=-\left[\lim _{x \rightarrow 4} (4x-10)\right] \\ & =-[4(4)-10] \\ & =-[16-10]=-6 \\ \lim_{x \rightarrow 4}[-g(x)] & =-6 \end{aligned}\]

and

    \[\begin{aligned} & -g(4)=-[g(4)]=-[-6]=6 \\ & \lim _{x \rightarrow 4}[-g(x)] \neq-g(4) \end{aligned}\]

Therefore, -g(x) in not continuous at x=4.
(d) |f(x)|

    \[\begin{aligned}  & f(x)=\left\{\begin{array}{ll} 1, & x \neq 4 \\ -1 & x=4 \end{array} \\ & \lim_{x \rightarrow 4}|f(x)|=\left|\lim _{x \rightarrow 4} f(x)\right|=|1|=1 \\ & \Rightarrow \quad \lim _{x \rightarrow 4}|f(x)|=1 \\ & \text { and }|f(4)|=|-1|=1 \\ \end{aligned}\]

So \lim _{x \rightarrow 4}|f(x)|=1=|f(4)| \therefore|f(x)| in continuous at x=4.
Q.05(e-f)
Solution:
(e) f(x) g(x)

    \[f(x)=\left\{\begin{array}{ll} 1, & x \neq 4 \\ -1 & x=4 \end{array}\]

    \[g(x)= \begin{cases}4 x-10, & x \neq 4 \\ -6 & x=4\end{cases}\right.\]

    \[\begin{aligned} & \lim _{x \rightarrow 4} f(x) g(x)=\left[\lim_{x \rightarrow 4} f(x)\right]\left[\lim_{x \rightarrow 4} g(x)\right] \\ &=[1]\left[\lim _{x \rightarrow 4}(4 x-10)\right] \\ &=[1][4(4)-10] \\ & \lim_{x \rightarrow 4} f(x) g(x)=16-10=6 \\ & \text { and } \quad f(4) g(4)=(-1)(-6)=6 \\ & \Rightarrow \lim_{x \rightarrow 4} f(x) g(x)=6=f(4) g(4) \end{aligned}\]

\Rightarrow f(x) g(x) is continuous at x=4
 
(f) \quad g(f(x))

    \[f(x)=\left\{\begin{array}{ll} 1, & x \neq 4 \\ -1 & x=4 \end{array}\]

    \[g(x)= \begin{cases}4 x-10, & x \neq 4 \\ -6 & x=4\end{cases}\right.\]

 
As \quad \quad f(x)=1 when x \neq 4

    \[\therefore g(f(x))=g(1) \text { when } x \neq 4\]

and f(x)=-1 at x=4

    \[\begin{aligned} & \quad \therefore g(f(x))=g(-1) \text { when } x=4 \\ & g(x))= \begin{cases}g(1), & x \neq 4 \\ g(-1), & x=4\end{cases} \end{aligned}\]

As \quad \quad g(x)=4 x-10, when x \neq 4

    \[\therefore g(1)=4(1)-10=-6\]

and g(-1)=4(-1)-10=-14, when x=4

    \[g(f(x))= \begin{cases}-6, & x \neq 4 \\ -14, & x=4\end{cases}\]

    \[\lim _{x \rightarrow 4} g(f(x))=-6 \text { and } g(f(4))=-14\]

Since

    \[\lim _{x \rightarrow 4} g(f(x)) \neq g(f(4))\]

\therefore \quad g(f(x)) is not continuous at x=4
Q.05(g)
Solution:
(g) g(x)-6 f(x)

    \[f(x)=\left\{\begin{array}{ll} 1, & x \neq 4 \\ -1 & x=4 \end{array}\]

    \[g(x)= \begin{cases}4 x-10, & x \neq 4 \\ -6 & x=4\end{cases}\right.\]

 

    \[\begin{aligned}   \lim_{x \rightarrow 4}[g(x)-6 f(x)] & =\lim _{x \rightarrow 4} g(x)-6 \underset{x \rightarrow 4} f(x) \\ & =\lim_{x \rightarrow 4}[4 x-10]-6 \lim_{x \rightarrow 4}(1) \\ & =4(4)-10-6 \\ & =16-10-6=0 \end{aligned}\]

    \[\begin{aligned} & \lim _{x \rightarrow 4}[g(x)-6 f(x)]=0 \\ & g(4)-6 f(4)=-6-6(-1) \\ & =-6+6=0 \end{aligned}\]

Since

    \[\lim _{x \rightarrow 4}[g(x)-6 f(x)]=0=g(4)-6 f(4)\]

therefore g(x)-6 f(x) is continuous at x=4.