Calculus Solutions Ex#1.3

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab
Q.09
Solution:

    \[\lim_{x \rightarrow+\infty}\left(1+2 x-3 x^5\right)=\lim_{x \rightarrow+\infty}\left(-3 x^5\right)=-\infty\]


This is because the behavior of a polynomial matches the end behavior of its highest degree term.
Q.10
Solution:

    \[\lim _{x \rightarrow+\infty}\left(2 x^3-100 x+5\right)=\lim_{x \rightarrow+\infty} 2 x^3=+\infty.\]

\quad \left(2 x^3\right. is the highest degree term).
Q.11
Solution:

    \[\quad \lim_{x \rightarrow+\infty} \sqrt{x}=\sqrt{\lim_{x \rightarrow+\infty} x}=+\infty\]

.
Q.12
Solution:

    \[\lim _{x \rightarrow-\infty} \sqrt{5-x}=\sqrt{\lim _{x \rightarrow-\infty} (5-x)}=\sqrt{5+\infty}=+\infty\]

Q.13

    \[\lim _{x \rightarrow+\infty} \frac{3 x+1}{2 x-5}\]

Solution:
3x is the highest degree term in the numerater and 2x is the highest degree term in denominator

    \[\therefore \lim _{x \rightarrow+\infty} \frac{3 x+1}{2 x-5}=\lim _{x \rightarrow+\infty} \frac{3 x}{2 x}=\lim _{x \rightarrow+\infty} 3 / 2=3/2\]

.
Q.14

    \[\lim _{x \rightarrow+\infty} \frac{5 x^2-4 x}{2 x^2+3}\]

Solution:

    \[\lim _{x \rightarrow+\infty} \frac{5 x^2-4 x}{2 x^2+3}\]

5 x^2 is the highest degree term in the numerator and 2 x^2 is the highest degree term in the denominator

    \[\therefore \quad \lim _{x \rightarrow+\infty} \frac{5 x^2-4 x}{2 x^2+3}=\lim _{x \rightarrow+\infty} \frac{5 x^2}{2 x^2}=\lim _{x \rightarrow+\infty} 5 / 2=5 / 2\]

Q.15

    \[\lim _{y \rightarrow-\infty} \frac{3}{y+4}\]

Solution:

    \[\lim _{y \rightarrow-\infty} \frac{3}{y+4}=\lim _{y \rightarrow-\infty} \frac{3}{y}=0\]


because as y \rightarrow-\infty, \quad  \frac{1}{y} \rightarrow 0
Q.16

    \[\lim _{x \rightarrow+\infty} \frac{1}{x-12}\]

Solution:

    \[\begin{aligned} & \lim _{x \rightarrow+\infty} \frac{1}{x-12}=\lim _{x \rightarrow+\infty} \frac{1}{x}=0 \\ & \therefore \text { as } x \rightarrow+\infty, \frac{1}{x} \rightarrow 0 . \end{aligned}\]

Q.17
Solution:

    \[\lim _{x \rightarrow-\infty} \frac{x-2}{x^2+2 x+1}\]


x is the highest degree term in the numerator and x^2 is the highest degree term in the denominator.

    \[\begin{aligned} & \therefore \lim _{x \rightarrow-2} \frac{x-2}{x^2+2 x+1}=\lim _{x \rightarrow-\infty} \frac{x}{x^2} \\ &=\lim _{x \rightarrow-\infty} \frac{1}{x}=0 \\ & \therefore \quad as, x \rightarrow-\infty, \quad \frac{1}{x} \rightarrow 0 \end{aligned}\]

Q.18
Solution:

    \[\lim _{x \rightarrow+\infty} \frac{5 x^2+7}{3 x^2-x}\]

5 x^2 and 3 x^2 are the highest degree terms in the numerator and denominator respectively

    \[\begin{aligned} \therefore \quad \lim _{x \rightarrow+\infty} \frac{5 x^2+7}{3 x^2-x} & =\lim _{x \rightarrow+\infty} \frac{5 x^2}{3 x^2} \\ & =\lim _{x \rightarrow+\infty} \frac{5 }{3}=5 / 3 \end{aligned}\]

Q.19

    \[\lim _{x \rightarrow+\infty} \frac{7-6 x^5}{x+3}\]

Solution:

    \[\lim _{x \rightarrow+\infty} \frac{7-6 x^5}{x+3}=\lim _{x \rightarrow+\infty} \frac{-6 x^5}{x}\]


Because -6 x^5 and x are the highest-degree terms in the numerator and denominator, respectively. Therefore,

    \[\lim _{x \rightarrow+\infty} \frac{-6 x^5}{x}=\lim _{x \rightarrow+\infty}-6 x^4=-\infty\]