Calculus solution Ex#4.4

 

Exercise 4.4

Question 7
Find the absolute maximum and minimum values
f(x)=4 x^2-12 x+10 ;[1,2]
Solution
Since it is a polynomial, therefore its continuous and differentiable everywhere.
To find critical points:

    \[f(x)=4 x^2-12 x+10-------(1)\]

differentiating w.r.t x

    \[f^{\prime}(x)=8 x-12\]

Set f^{\prime}(x)=0

    \[\Rightarrow 8 x-12=0 \Rightarrow 8 x=12\]

    \[\Rightarrow x=\frac{12}{8}=\frac{3}{2}\]

The critical point \frac{3}{2} lies in the interval (1,2).Therefore the absolute maximum and absolute minimum must occur at the end of points of the interval[1,2], or at the critical point x=3/2
Substituting x=1,2 \quad\text{and } 3/2 into (1).

    \[f(1) =4(1)^2-12(1)+10=4-12+10=2\]

    \[f(2) =4(2)^2-12(2)+10=16-24+10=2\]

    \[f(3 / 2) =4(3 / 2)^2-12(3 / 2)+10=4(9 / 4)=6(3)+10\]

    \[=9-18+10=1\]

Thus the absolute minimum  of f = 1 at x=3/2 and absolute maximum of f=2 at x=1,2

Question 8

    \[f(x)=8 x-x^2 ;[0.6]\]

Solution

    \[f(x)=8 x-x^2 --------------(1)\]

The function f(x) is continous and differentiable everywhere since its a polynomial
To find a critical point:

    \[f^{\prime}(x)=8-2 x\]

set

    \[f^{\prime}(x)=0 \Rightarrow 8-2 x=0 \Rightarrow 8=2 x\]

    \[\Rightarrow x=\frac{8 }{2}=4\]

The critical point 4 lies in the interval [0,6].Therefore the absolute maximum and absolute minimum must occur at the end of points of the interval[0,6], or at the critical point x=4
Substituting x=0,4,6 into (1)

    \[f(0)=8(0)-0=0\]

    \[f(4)=8(4)-4^2=32-16=16\]

    \[f(6)=8(6)-6^2=48-36=12\]

Thus, the absolute minimum = 0 at x=0 and absolute maximum=  16 at x=4.

Question 13
f(x)=x-2 \sin x:[-\pi / 4, \pi / 2].
Solution
The function is continuous and differentiable everywhere\\
To find the critical point:

    \[f(x)=x-2 \sin x -----------(1)\]

differentiating w.r.t x

    \[f^{\prime}(x)=1-2 \cos x\]

Set

    \[f^{\prime}(x)=0\]

    \[\Rightarrow 1-2 \cos x=0\]

    \[\Rightarrow 2 \cos x=1\]

    \[\Rightarrow \cos x=\frac{1}{2}\]

    \[\Rightarrow x=\cos^{-1} (1 / 2)={\pi / 3}\]

The critical point {\pi / 3} lies in the interval [-\pi / 4, \pi / 2].Therefore the absolute maximum and absolute minimum must occur at the end of points of the interval[-\pi / 4, \pi / 2], or at the critical point x={\pi / 3}
substituting x=-\pi/4, \quad \pi/3 and \pi/2 into (1).

    \[f\left(\frac{-\pi}{4}\right) & =-\frac{\pi}{4}-2sin\left(\frac{-\pi}{4}\right)\]

    \[&=-\frac{\pi}{4}+2sin\left(\frac{\pi}{4}\right)\]

    \[& =\frac{-\pi}{4}+\frac{2}{\sqrt{2}}=\frac{-\pi}{4}+\sqrt{2}\]

    \[f\left(\frac{\pi}{3}\right) & =\frac{\pi}{3}-2 \sin \left(\frac{\pi}{3}\right)\]

    \[& =\frac{\pi}{3}-2\left(\frac{\sqrt{3}}{{2}}\right)=\frac{\pi}{3}-\sqrt{3\]

    \[f\left(\frac{\pi}{2}\right) & =\frac{\pi}{2}-2 \sin \left(\frac{\pi}{2}\right)\]

    \[& =\frac{\pi}{2}-2(1)=\frac{\pi}{2}-2\]

Thus the maximum value of f is -\frac{\pi}{4}+\sqrt{2} at x=-\pi / 4 and the minimum value of f is \frac{\pi}{3}-\sqrt{3} at x=\frac{\pi}{3}.

Question 16

    \[f(x)=|6-4x| ;[-3,3]\]

Solution

    \[f(x)= \begin{cases} 6-4 x & 6-4 x \geq 0 \\ -(6-4x) & 6-4 x< 0\end{cases}\\\]

    \[f(x)= \begin{cases} 6-4x & 6\geq 4x \\-6+4x) & 6< 4x\end{cases}\\\]

    \[f(x)= \begin{cases} 6-4 x & x\leq \frac{3}{2} \\ -6+4x & x> \frac{3}{2}\end{cases} \quad (1)\\\]

    \[f^{\prime}(x)= \begin{cases}-4 & x<3 / 2 \\ 4 & x>3 / 2\end{cases}\\\]

We see that f^\prime(x) does not exist at x=\frac{3}{2}, therefore x=\frac{3}{2} is the only critical point that lie on the interval (-3,3).The absolute maximum and absolute minimum value of f must occur either at the end point of the interval [-3,3] or at x=\frac{3}{2}.
Substituting -3, \frac{3}{2} and 3 into (1)

    \[f(-3)=+6-4(-3)=+6+12=+18\]

    \[f\left(\frac{3}{2}\right)=6-4\left(\frac{3}{2}\right)=6-6=0\]

    \[f(3)=6+4(3)=-6+12=+6.\]

Thus absolute minimum value of f is 0 at x=3/2 and absolute maximum value is 18 at x=-3.