Calculus Solutions EX #4.2

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

EXERCISE 4.2

3. (a)

    \[f(x)=3 x^{2}-6 x+1 \quad \quad (1)\]

First derivative test

Differentiating (1) w.r.t x.

    \[f^{\prime}(x)=6 x-6 \quad \quad (2)\]

Given that x_{0}=1.
Sign analysis of f^{\prime}(x)

    \[ \begin{center} \begin{tabular}{|c|c|c|c|}\hline\text {Interval} & $\begin{array}{c}\text { test point } \\ c\end{array}$ & $\begin{array}{l}f^{\prime }(c) \end{array}$ & Sign of $f^{\prime}(x)$ \\\hline$x<1$ & 0 & $\begin{aligned} f^{\prime }(0) & =6(0)-6 \\ & =-6\end{aligned}$ & - \\\hline$x>1$ & 2 & $\begin{aligned} f^{\prime}(2) & =6(2)-6 \\ & =+6\end{aligned}$ & + \\\hline \end{tabular}\end{center} \]

By first derivative test, f has relative minimum at x=1

Second derivative test

differentiating (2) w.r.t x.

    \[\begin{aligned} & f^{\prime \prime}(x)=6 \\ & f^{\prime \prime}(1)=6>0 \end{aligned}\]

Thus by second derivative test f has relative minimum at x=1.

3. (b)

    \[f(x)=x^{3}-3 x+1 \quad \quad (1)\]

First derivative test

Differentiating (1) w.r.t x
Given that x_{0}=1.

    \[f^{\prime}(x)=3 x^{2}-3 \quad \quad (2)\]

Sign analysis of f^{\prime}(x)

    \[ \begin{center} \begin{tabular}{|c|c|c|c|}\hline\text {Interval} & $\begin{array}{c}\text { test point } \\ c\end{array}$ & $\begin{array}{l}f^{\prime }(c) \end{array}$ & Sign of $f^{\prime}(x)$ \\\hline$x<1$ & 0 & $\begin{aligned} f^{\prime }(0) & =-3 \\ \end{aligned}$ & - \\\hline$x>1$ & 2 & $\begin{aligned} f^{\prime}(2) & =3(2)^2-3 \\ & =+9\end{aligned}$ & + \\\hline \end{tabular}\end{center} \]

By the first derivative test we conclude that f has relative minimum at x=1

Second derivative test

Differentiating (2) w.r.t x

    \[f^{\prime \prime}(x)=6 x\]

Giver what x=x_{0}=-1.

    \[f^{\prime \prime}(-1)=6(-1)=-6<0\]

\therefore \quad f has relative maximum at x=-1.

4(a)

    \[\quad f(x)=\sin^{2} x\]

Given that x=x_{0}=0

First derivative test

    \[f^{\prime}(x)=2 \sin x \cos x=\sin 2 x\]

Sign analysis of f^{\prime}(x) ( For test value close to o).

    \[ \begin{center} \begin{tabular}{|c|c|c|}\hline  $\begin{array}{c}\text { test point } \\ c\end{array}$ & $\begin{array}{l}f^{\prime }(c) \end{array}$ & Sign of $f^{\prime}(x)$ \\\hline  -\pi/4 & $\begin{aligned} f^{\prime }(-\pi/4) & =\sin 2(-\pi/4)=-\sin (\pi/2) \\ & =-1 \end{aligned}$ & - \\\hline  \pi/4 & $\begin{aligned} f^{\prime}(\pi/4) & =\sin 2(\pi/4)=\sin (\pi/2) \\ & =+1 \end{aligned}$ & + \\\hline \end{tabular}\end{center} \]

By fist derivative we conclude that f has relative minimum at x=0.

second derivative test

Differentiating (1) w.r.t. x

    \[f^{\prime \prime}(x)=2 \cos 2 x\]

Given what x=x_{0}=0

    \[\begin{aligned} & \text { Given that } x=x_{0}=0 \\ & \therefore f^{\prime \prime}(0)=2 \cos (0)=2>0 \end{aligned}\]

\Rightarrow f has relative minimum at x=0

4.(b)

    \[\quad g(x)=\tan ^{2} x\]

Given x=x_{0}=0

First derivative test

    \[g^{\prime}(x)=2 \tan x \sec ^{2} x \quad \quad (1)\]

Sign analysin of g^{\prime}(x) near to 0 .

    \[ \begin{center} \begin{tabular}{|c|c|c|}\hline  $\begin{array}{c}\text { test point } \\ c\end{array}$ & $\begin{array}{l}g^{\prime }(c) \end{array}$ & Sign of $g^{\prime}(x)$ \\\hline  -\pi/4 & $\begin{aligned} g^{\prime }(-\pi/4) & =2 \tan(-\pi/4)\sec^{2}(-\pi/4) \\ &=-2(1)(2) =-4 \end{aligned}$ & - \\\hline  \pi/4 & $\begin{aligned} g^{\prime}(\pi/4) & =2 \tan(\pi/4)\sec^{2}(\pi/4) \\ &=2(1)(2) =+4 \end{aligned}$ & + \\\hline \end{tabular}\end{center} \]

By the first derivative test we come to the conclusion that g has relative minimum at x=0

Second derivative test

Differentiating (1) w.r.t. x

    \[\begin{aligned} & g^{\prime \prime}(x)=2 \sec ^{2} x \sec ^{2} x+2 \tan x(2 \sec x \cdot \sec x \tan x) \\ & g^{\prime \prime}(x)=2 \sec ^{4} x+4 \sec ^{2} x \tan ^{2} x \\ & g^{\prime \prime}(x)=2 \sec ^{2} x\left(\sec ^{2} x+2 \tan ^{2} x\right) \end{aligned}\]

    \[\begin{aligned} & g^{\prime \prime}(0)=2 \sec ^{2}(0)\left(\sec ^{2}(0)+2 \tan ^{2}(0)\right) \\ & g^{\prime \prime}(0)=2(1)(1+0)=2>0 \end{aligned}\]

\Rightarrow g(x) has relative minimum at x=0

(C) Both the functions f(x) and g(x) are squares for x \neq 0 and x near to 0 . Both have positive values for values of x close to zero and both are zero at x=0.

5. (a)

    \[\begin{aligned} & f(x)=(x-1)^{4} \\ \\ & f^{\prime}(x)=4(x-1)^{3} \quad \quad (1) \\ \\  \text {and} \quad g(x)=x^{3}-3 x^{2}+3 x-2 \\ \\ & g^{\prime}(x)=3 x^{2}-6 \quad \quad (2). \end{aligned}\]

x=1 will be stationary point of f and g if f^{\prime}(1)=0 and g^{\prime}(1)=0

    \[\begin{aligned}  & f^{\prime}(1)=4(1-1)^{3}=0 \\ \\ g^{\prime}(1)=3(1)^{2}-6(1)+3=3-6+3=0 \end{aligned}\]

\Rightarrow x=1 is a stationary point of f and g.

(b) Differentiating (1) and (2) in (a)

    \[\begin{aligned} & f^{\prime \prime}(x)=12(x-1)^{2} \\ & g^{\prime \prime}(x)=6 x-6 \end{aligned}\]

    \[\begin{aligned} & f^{\prime \prime}(1)=12(1-1)=0 \quad \text { no conclusion. } \\ & g^{\prime \prime}(1)=6(1)-6=0 \quad \text { no conclusion. } \end{aligned}\]

Leave a Comment